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SUMMARY

A fluid model of the incompressible Stokes equations in two space dimensions is used to simulate the
motion of a droplet boundary separating two fluids with unequal viscosity and variable surface tension.
Our theoretical analysis leads to decoupled jump conditions that are used in constructing the numerical
algorithm. Numerical results agree with others in the literature and include some new findings that may
apply to processes similar to cell cleavage. The method developed here accurately preserves area for our
test problems. Some interesting observations are obtained with different choices of the parameters.
Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Stokes equations have been widely used to simulate the deformation and cleavage of fluid
droplets, and the fluid droplets have been used as a model for the deformation and cleavage
of cells, e.g. References [1–3]. In �i�o or in �itro, cells live surrounded by a medium, which can
be mechanically significant, yet most biomechanical analyses of cell and tissue deformations
stop at the cell membrane or basal lamina. In this paper, we consider the fluids inside and
outside an evolving interface, where the two fluids may be of unequal viscosity. Let �=
�− ��+ �� be a bounded domain, where �− is the inside fluid, �+ is the outside fluid, and
� is the interface between them, which is closed; see Figure 1 for an illustration.
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Figure 1. A diagram of the geometry discussed in this paper as used for the derivation of jump relations.

We use the following Stokes equation with a periodic boundary condition to study the
motion of the fluids inside and outside of a droplet:

�p=��u, (x, y)��−� (1.1)

� ·u=0, (x, y)�� (1.2)

Periodic BC for u and p (1.3)

where u= (u, �) is the velocity vector, p is the pressure, � is the viscosity, defined as piecewise
constant, with

�=
��− if (x, y)��−

�+ if (x, y)��+ (1.4)

The periodic boundary condition is justified since for many biological problems, we assume
that the far-field conditions are unimportant; e.g. see References [4,5] and the references
therein. Across the interface, there are the jump conditions, see e.g. [1,6,7]

[p−2�(�u ·n, �� ·n) ·n]=�(s)� (1.5)

[�(�u ·n, �� ·n)] · t+�(�u · t, �� · t) ·n]= −
��(s)

�t
(1.6)

where s is the counterclockwise arc-length parameterization along the interface, n and t are the
unit outwards normal and counter-clockwise tangent directions of the interface, � is the
curvature
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��(s)
�t

=��(s) ·t

is the derivative of �(s) along the tangential direction, the jump [ · ] is defined as the difference
between the limiting value from outside the cell boundary and that from the inside, and �(s)
is the surface tension, which may be modeled by a separate equation [1,2]. In this paper, we
allow surface tension to be constant or a simple function defined on the surface of the cell. The
surface tension is the main driving force for the cell deformation. The interface has the same
velocity as the fluids surrounding it

��
�t

=u (1.7)

hence mass inside or outside the interface is conserved. We assume that the flow is isothermal,
therefore the velocity is continuous across the interface [8].

Almost all the numerical simulations for viscous droplet dynamics with a free boundary are
based on a boundary integral method; see for example, [9,10] and some others. Few examples
can be found in the literature that use the finite element method [6] or finite difference method
to solve the problems because of the prohibitive computational cost to solve the problem in the
entire domain when the jump in the viscosity is large. However, when the viscosity is
continuous, the problem can be solved easily with the finite difference method (see References
[11,12] and others). In this paper, we use a finite difference method based on a fast Poisson
solver to solve the two-fluid moving interface problem. One of the advantages of this approach
is that we are able to obtain the velocity and pressure in the entire domain without sacrificing
the speed of the simulation. The approach described here is not tied to a boundary integral
equation, making it potentially useful for constructing some desired force to control the shape
of the moving interface, even if a boundary integral equation is not available or difficult to
derive.

Outside and inside the domain excluding the interface, Equation (1.1) can be reformulated
as a sequence of three Poisson problems, one for each variable due to the incompressibility
condition. For piecewise constant viscosity, applying the divergence operator to Equation (1.1)
and using the incompressibility condition, we get

�p=0, (x, y)��−�, periodic BC on �� for p (1.8)

where � is the Laplacian operator. Although p satisfies the Laplace equation in the domain
excluding the interface �, it is a Poisson problem for the pressure in the entire domain since
the jump conditions for the pressure correspond to single and double source distributions
along the interface �. Once p is known, Equation (1.1) represents two independent Poisson
problems for u and � respectively. However, the solutions outside and inside are not
independent. A numerical algorithm that ignores the coupling relations usually lowers the
accuracy especially at or near the interface. In this paper, we derive the jump conditions of the
solution across the interface and use them to construct an accurate solution method.
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The rest of the paper is organized as follows. In Section 2, we derive the jump conditions for
Equations (1.1)– (1.3). In Section 3, we outline our numerical algorithm, which is rather
straightforward once we know the jump conditions. Numerical experiments are provided and
analyzed in Section 4. Some conclusions will be given in Section 5.

2. DERIVING THE JUMP CONDITIONS

Using the immersed interface method (IIM) [13–17] we can solve the three Poisson equations
for u, �, and p efficiently if we know the jump conditions in the solution and in the flux.
However, the jump conditions given in Equations (1.5) and (1.6) are coupled and we cannot
use them directly. The approach used in [11] for the Stokes equation cannot be applied due to
the discontinuity in the viscosity. Fortunately, the following theorem gives decoupled jump
conditions.

Theorem 1
Let p, u, and � be the solution of Equations (1.1)– (1.3) with the jump conditions (1.5) and
(1.6). If �(s) is smooth enough such that the solution p and u are piecewisely twice
differentiable, then the following equalities hold:

�
�

�u
�n
n

=
��(s)

�t
t (2.9)

[p ]=�(s)� (2.10)

��p
�n
n

=
�2�

�t2 (2.11)

where

�p
�n

=�p ·n

Note that while p and u may not be smooth—and p may not even be continuous—across
the interface, it is reasonable to assume that the velocity and pressure are smooth inside and
outside of the interface excluding the interface.

To prove the theorem, it is more convenient to use the local co-ordinates. Let (X, Y) be a
point on the interface, and the unit normal and tangential directions are

n= (cos �, sin �), t= (−sin �, cos �)

respectively, where � is the angle between the outward normal direction and the x-axis; see
Figure 2 for an illustration. The local co-ordinates at (X, Y) then are
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Figure 2. Local co-ordinates and geometry.

�= (x−X) cos �+ (y−Y) sin � (2.12)

�= − (x−X) sin �+ (y−Y) cos �

We first prove the following lemma, which is needed in the proof of Theorem 1.

Lemma 1
Assume the conditions in Theorem 1 are true. Let u be the solution to (1.1)– (1.3). Then the
following equalities are true:

[�(uxx+uxy)]=0, [�(uxy+�yy)]=0 (2.13)

[�ux cos �+�x sin � ]=0, [�uy cos �+�y sin � ]=0 (2.14)

Proof
In the inside and outside of the domain excluding the interface, we have

ux+�y=0 and �(ux+�y)=0

�(uxx+�xy)=0 and �(�xy+�yy)=0

Therefore, we can continuously extend the definitions above to everywhere inside the domain
� and we have the equalities in (2.13).

To prove the second part, we enclose the interface with a small domain �� ; see Figure 1 for
an illustration. Let �(x, y)�C� be a two-dimensional test function. Since �(uxx+�xy) and
�(uxy+�yy) are continuous inside �(�) after the extension, we have
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�(uxx+�xy)=� ·�
�ux

�x

n
=0 (2.15)

�(uxy+�yy)=� ·�
�uy

�y

n
=0 (2.16)

Here we have used the fact that � is piecewise constant and

�(uxx+�xy)=
�

�x
�

�
��

�y
�

+
�

�x
�

�
��

�y
�

=0

has continuous extension across the cell boundary. Multiply (2.15) by any test function
�(x, y)�C�(�) and integrate over ��. From Green’s theorem, we have

lim
��0

��
��

�� ·
�

�
�ux

�x

n�
dx dy

=
�

�
� [�(ux cos �+�x sin � ] ds+ lim

��0

��
��

�� ·
�ux

�x

n
� dx dy

=
�

�
� [�(ux cos �+�x sin �)] ds=0

where we have used the fact that �, ux, and �x are bounded. Since � is arbitrary, we conclude
that

[�(ux cos �+�x sin �)]=0 (2.17)

Similarly, we can get

[�(uy cos �+�y sin �)]=0 (2.18)

This completes the proof of the lemma.

Proof of Theorem 1
Expressing the jump condition (1.6) in terms of the local co-ordinates, we get

−sin � [�u� ]+cos � [��� ]+cos � [�u� ]+sin � [��� ]= −
��(s)

�t
(2.19)

Expressing the jump condition [�(ux+�y)]=0 in terms of the local co-ordinates, we have
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cos � [�u� ]+sin � [��� ]−sin � [�u� ]=0 (2.20)

Under the local co-ordinates, the two equalities in (2.14) are

cos2 � [�u� ]+sin � cos � [��� ]−sin � cos � [�u� ]−sin2 � [��� ]=0 (2.21)

sin � cos � [�u� ]+sin2 � [��� ]+cos2 � [�u� ]+sin � cos � [��� ]=0 (2.22)

The coefficient matrix of (2.19)– (2.22) is non-singular, and its inverse is

�
�
�
�
�

−sin � 0 2 cos2 �−1 2 sin � cos �

cos � 0 2 sin � cos � −2 cos2 �+1
0 −sin � 0 1
0 cos � −1 0

�
�
�
�
�

(2.23)

Therefore we have proved that

[�u� ]= −
��

�t
sin �, [��� ]=

��

�t
cos �

which is (2.9) in Theorem 1. The proof of (2.10) is straightforward if we substitute the
equalities above into (1.5).

From the system of equations and the inverse of the coefficient matrix, we also conclude
that

[�u� ]=0, [��� ]=0

Let the interface � be �=	(�) in the neighborhood of (�, �)= (0, 0), which satisfies 	(0)=0,
	 �(0)=0. Then 	�(0)=�, the curvature of the interface at (0,0). Differentiating [u� ]=0 along
the tangential direction, we get

[�u�� ]=0, [���� ]=0 (2.24)

Differentiating

[�u� ]=
��

�t
t

along the tangential direction, we get

[�u�� ]=
�2�

�t2 t+�
��

�t
n (2.25)
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Expressing [�(uxx+�xy)]=0 and [�(uxy+�yy)]=0 in the local co-ordinates, we obtain

[�(u�� cos2 �−2u�� cos � sin �+u�� sin2 �+��� cos � sin �+���(cos2 �−sin2 �)

−��� cos � sin �)]=0

[�(u�� cos � sin �+u��(cos2 �−sin2 �)−u�� cos � sin �+��� sin2 �+2��� cos � sin �

+��� cos2 �)]=0

Multiplying cos � by the first equation and sin � by the second equation above, after some
algebra, we get

[�(u�� cos �+��� sin �)]= [�(u�� sin �−��� cos �)] (2.26)

Now we are ready to derive the jump condition for �p/�n from the momentum equation in the
local co-ordinates

[�p ·n]= [�(u��+u��)] cos �+ [�(���+���)] sin �= [�(u�� sin �−��� cos �)]

=
�2�

�t2 sin2 �−�
��

�t
sin � cos �+

�2�

�t2 cos2 �+�
��

�t
sin � cos �=

�2�

�t2

This completes the proof of Theorem 1.

Remark 1
If we denote

f� 1=�, f� 2=
��

�t
(2.27)

as the normal and tangential force strength, then the jump conditions proved in the theorem
are the same as those derived in References [18,11] for continuous viscosity.

3. NUMERICAL METHOD

For simplicity, we assume that the domain � is a rectangle [a, b ]× [c, d ], and the spatial
spacing is h= (b−a)/M= (d−c)/N, where M and N are the number of grid points in the x-
and y-directions respectively. A standard uniform grid is used but the scheme discussed in this
section can be generalized to other grids as well without substantial difficulty.

We use a marked particle approach to express the moving interface since we are not
particularly interested in topological changes at this stage. The advantages of using the particle
approach include: (a) taking advantage of the spline interpolation package developed in [14],
which can also find the tangential derivatives easily for a quantity defined on the interface; (b)
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better control of accuracy and area preservation since we have control of the number of points
on the interface. The main steps used to move the interface from time tn to tn+1 are the
following:

� Evaluate the interface information such as the tangential and normal directions, the jumps
and their derivatives along the interface using the periodic spline interpolation package [14].

� Use the IIM method [13,14] to solve the Poisson equation for the pressure. With the IIM
method, the discrete system of equations is the standard Laplacian plus some correction
terms at irregular grid points (those points whose 5-point stencil includes points on both
sides of the interface). The cost is just a little more than one call to the fast Poisson solver
(which in this paper is the one from Fishpack [19]).

� Interpolate the pressure to get px and py including those grid points near or on the interface.
The standard central finite difference schemes at a regular grid point (xi, yj) are

px=
pi+1, j−pi−1, j

2h
, py=

pi, j+1−pi, j−1

2h

At an irregular grid point, we use the one-sided weighted least square interpolation [16] to
get px and py. For example,

px(xi, yj)=�
k,l


klpkl

where the summation is taken for those points (xk, yl) that are on the same side of the
interface as (xi, yj) and

(xk−xi)2+ (yl−yj)2��2

for a given ��Ch, for some constant C. In our test, C is usually chosen as 3.6h. Such
interpolation gives smooth error distribution and good accuracy. Usually the system of
equations for the interpolation coefficients is underdetermined and is solved using the
singular value decomposition process. Since the dimension of the system is small, such
interpolation does not add much extra cost to the entire algorithm.

� Use the fast IIM method [16] to solve the elliptic equations with the given jump conditions.
Since there can be a big jump in the viscosity, such a solution process used to be the most
expensive part. In the fast IIM method, we introduce an unknown jump [un ], which is only
defined along the marked particles. A GMRES iteration is used to solve the unknown [un ].
Each iteration of GMRES is one call to the fast Poisson solver. With the fast IIM method,
the number of iterations is independent of both the jump in the coefficients and the mesh
size. The fast IIM method takes advantage of the fast Poisson solver from Fishpack [19].
It is almost impossible to simulate the problem discussed here with a large jump in the
viscosity without the fast IIM method. The fast IIM solver for elliptic interface problems
with piecewise coefficients is available through the public ftp site at North Carolina State
University (ftp.ncsu.edu under the directory of /pub/math/zhilin/package).
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� Use the weighted least squares interpolation again to interpolate the velocity field at the
marked points to get the velocity Uk

n, k=1, 2, . . . , nb.
� Update the cell boundary using the computed velocity

Xk
n+1=Xk

n+�tUk
n, k=1, 2, . . . , nb (3.28)

The time step for the explicit method is chosen as

�t=
h2

max
k

�Uk
n� max{�+, �−}

(3.29)

While it is reasonable to use an explicit method for two-dimensional simulation, an implicit
method may be needed for three-dimensional problems.

4. NUMERICAL EXAMPLES

All the calculations in this section were performed at North Carolina State University using
Sun workstations. Most simulations are done within hours depending on the number of grid
points. We use the spline interpolation package developed in [14] to express the interface.

4.1. Example 1

We first test the classic case in which the surface tension � is a constant. It is well known that
the droplet boundary will relax to a circle, its equilibrium state. The initial droplet boundary
is:

�(�)=0.5+0.2 sin(5�), 0���2 (4.30)

where r=�x2+y2. The computational domain is [−1, 1]× [−1, 1].
We tested our code for different viscosity ratios and surface tension. The numerical

experiments reveal the following two important features. We know intuitively that the larger
the surface tension is, the faster the boundary will approach the equilibrium state, a circle with
the same area as the original droplet. Another important factor affecting the interface motion
is the ratio �−/�+ of viscosities inside and outside the boundary respectively. The larger this
ratio is the faster the motion. In Figure 3, we plot the cell boundary at different times with
different surface tensions and viscosity ratio �−/�+, using an 80×80 grid and nb=80 marked
points on the cell boundary.

� Surface tension: In Figure 3(a) and (b), the surface tension is �=0.01, a small number, and
it takes a relatively long time for the cell boundary to converge to or close to its equilibrium
state. In Figure 3(c) and (d), the surface tension is �=0.1, and we see that the cell boundary
moves much faster than in the first case.
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Figure 3. The interface at different times computed using an 80 by 80 grid and a constant surface
tension; �=0.01 in (a) and (b), and �=0.1 in (c) and (d). Viscosities are equal (�− =�+ =1) in (a) and
(c), and unequal (�− =1, �+ =0.01) in (b) and (d). While the boundary in all cases asymptotically
approaches the circular equilibrium state, the time scale is very different. The boundary moves faster as
surface tension � or viscosity ratio �−/�+ gets larger. (a) Equal viscosity, small surface tension. Times
t=0, 39.4531, 109.7656, and 163.28. The shape is far from the equilibrium state even with t=163. (b)
Unequal viscosity, small surface tension. Times t=0, 14.5128, 37.9503, and 85.1378. The shape is very
close to the equilibrium state at t=85. So the motion is much faster than the case with equal viscosity.
(c) Equal viscosity, larger surface tension. Times t=0, 10.6074, 30.1222, and 77.0128. The motion is
faster than the case with small surface tension but slower than the case with larger ratio of �−/�+. (d)
Unequal viscosity, large surface tension. Times t=0, 1.0761, 2.9288, and 14.6779. The motion is faster

than all three other cases in this figure.
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� Viscosity ratio: In Figure 3(a) and (c) the ratio is 1 and we see slower motion compared
with (b) and (d), even for the same surface tension.

The algorithm preserves both symmetry and area very well. In all cases, the relative area
change is less than 4 per cent. The largest area changes are from the first few steps since the
initial interface has relatively large curvature. In the figure, Earea is the relative error in the area
at that particular time.

4.2. Example 2

In this test, we try to use a variable surface tension to model cell cleavage, after the fashion of
Greenspan and others [1,2,6]. However, our model tracks two fluid regions instead of one.
First we test a case that is similar to the numerical test in [6] and analyzed in [1,2]. The initial
cell boundary is a circle

x2+y2=0.452

The surface tension is chosen as

�=0.01+��w(x(s)) (4.31)

where x(s) is the x co-ordinates of the cell boundary, and �w(x) is defined as

�w(x)=

�
�
	
�



1
4w

(1+cos(x/2w)) if �x ��2w

0 if �x ��2w
(4.32)

the discrete delta function for the immersed boundary method [4]. According to the small-de-
formation theory of Greenspan [1,2], confirmed by He and Dembo [6], the interface will bend
in the middle, which is verified by our numerical example. In Figure 4, we plotted the interface
at t=0 and t=68.125 for the case of equal viscosity, and t=18.2807 for the case of different
viscosities �+ =0.01 and �− =1 with �=5h. While the choice of the non-linearity in the
surface tension will affect the deformation, our numerical experiments agree with He and
Dembo’s conclusion [6] that the droplet/cell cannot have a large deformation if (4.31) is used.
In fact, for our two-dimensional problem, the boundary will stop moving completely if the
local curvature reaches zero, hence cleavage is not possible in this model, since it involves
passage through zero on its way to negative curvature. He and Dembo [6] resolve this problem
by concluding that there is an extra phoretic force responsible for oil droplet cleavage. We
resolve this problem for the case of branching morphogenesis by modeling the effect of
oriented collagen bundles as an external force [Lubkin SR, Li Z. Force and deformation on
branching rudiments: cleaving between hypotheses (in preparation)].
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Figure 4. The cell boundary at different times with � =5h. (a) Equal viscosities �+ =�− =1. (b)
Unequal viscosities �+ =0.01 and �− =1. Surface tension given in (4.31). The dotted curve is the initial
cell boundary, the circle r=0.45. The solid curve is the cell boundary at (a) t=68.125 and (b)

t=18.2807. Again the motion is faster when the ratio �−/�+ is larger.

4.3. Example 3

In order to have the interface deform further, a different surface tension should be used in the
model (1.1)– (1.3). We examined the following surface tension model, corresponding to a
localized inwards-directed external force:

�=0.01−��w(x(s)) (4.33)

Note that this is similar to the generalized Gibbs–Thomson condition, see Reference [20] and
the references therein. The initial interface is the circle r=0.45 with a perturbation

r(�)=0.45+0.15 cos 2�, 0���2 (4.34)

In Figures 5 and 6, we plotted the evolution of the cell boundary with w=5h, and �=h,
where h= (b−a)/M= (d−c)/N is the spatial step size, for equal viscosities �+ =�− =1
(Figure 5) and unequal viscosities �+ =0.01 and �− =1 (Figure 6). We see that the area is
dividing and eventually will break up. The simulations are done with a 160×160 grid and 160
marked points on the cell boundary. Figures 5(b) and 6(b) are blow-ups of the upper tip. The
area conservation errors, marked on the figure, are less than 3.2 per cent, which is relatively
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Figure 5. (a) Evaluation of the cell boundary for Example 3 with equal viscosities �+ =�− =1 with
�=h. (b) Blow-up of the upper tip. Relative area changes over time are listed in the figure.

Figure 6. (a) Evolution of the cell boundary for Example 3 with different viscosities �+ =0.01 and
�− =1. (b) Blow-up of the upper tip. Relative area changes are listed in the figure. Motion is faster than

the case of equal viscosities (Figure 5).
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small for such a large deformation. We see similar evolution in both figures but faster motion
in the case of unequal viscosities, as discussed for Examples 1 and 2 above.

5. CONCLUSION

We have developed a finite difference method for the Stokes equations for incompressible
two-phase flow, which models droplet deformation with discontinuous viscosity and variable
surface tension. The decoupled jump conditions for the pressure and the velocity across the
interface are crucial for the success of the new algorithm. Our two-dimensional numerical
results agree with the results and analysis in the literature for similar choices of the surface
tension, in axisymmetric geometry. We took our simulations of a droplet under an external
force almost to the point of complete cleavage. While it is known that the motion of a droplet
boundary depends on the surface tension, our numerical experiments also demonstrated the
dependence of the motion on the difference between the internal and external viscosities.
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